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Abstract
In the text algorithm for splitting and merging complexes of convex polyhedra is proposed. The

need for such an algorithm emerges for example in computation of normalization factor of Bayesian
estimated posterior likelihood of parameters in an auto-regression model with Laplace distributed
innovations, where the split of the complex corresponds to newly arrived data incorporation and
the merging relates to making such a model adaptive by forgetting older data values – the situation
is most apparent in case of an estimation on a moving window.

I. Introduction and motivation

This text was mainly motivated by [1], where the authors introduce an algorithm for effective cutting
of complexes of convex polytopes by a hyperplane. As we will see, this algorithm is not well enough
suited for our purpose of simultaneously cutting a complex by a hyperplane and merging it according
to disappearance of another hyperplane. To arrive at such a situation, we will first introduce a context
of modeling time series by an auto-regressive (AR) model and estimation of their parameters in a
Bayesian way.

1. Auto-regression model
A class of AR models has been used often for modeling dynamics in various time series. The models

are well described in [2]. The AR stochastic process with constant parameters used to model the time
series falls into a class of processes linear in the mean value and can be written as

Φt+1 = AΦt + Σet+1 (1)

where Φt is a general p dimensional random vector, p is finite, A,Σ are matrices of unknown param-
eters and et is the innovation with the properties of white noise with dispersion I and t is a time index
where t ∈ T = {p, . . . , T}. In case, the dimension of et+1 is the same as the dimension of Φt+1,
matrix Σ is a square root of a positive definite matrix and we can reparametrize the model as

Φt = [I−B] Φt + BAΦt−1 + D
1
2 et (2)

where B is a lower triangular matrix with units on the diagonal and D
1
2 is a diagonal matrix. Thus

the vector process can be effectively decoupled into individual AR processes with scalar left-hand side
and parameters in these individual scalar models can be estimated separately.

Assuming densities exist for all the random variables involved in modeling the Bayesian estimation
of the parameters of the model proceeds with the Bayes rule as new data dt arrive

f(θ|dt,Ft−1) =
f(dt|θ,Ft−1)f(θ|Ft−1)∫

Ω
f(dt|θ,Ft−1)f(θ|Ft−1)dθ

(3)



where θ are the parameter values, Ω is the parameter space, f(•) are densities differentiated by their
condition and parameter and Ft is a σ-algebra generated by the information available at time t.

2. Laplace distributed innovations
The exact functional form of the estimation depends on the distribution of et in the AR model and

on the choice of prior distribution that has to be specified, when only information contained in F0 is
known. If in an individual scalar model, obtained by the above mentioned decomposition

Yt = φ′tα + σet (4)

et is Laplace distributed and a conjugate prior is chosen, so that after the estimation, the pre-estimation
density of the parameters retains its functional form, the posterior parameter density (likelihood) has
the form

f(α, σ|Ft) =
1

Jtσt+n1
exp

{
− 1

σ

t∑
i=1−n1

|yi − φ′iα|

}
(5)

where n0, n1 are hyperparameters of the conjugate prior and data with indices i ≤ 0 are artificial
data values specified by the choice of the prior as well. Jt is a normalization factor for the density to
integrate to 1 over the parameter space.

In case the parameters are not constant in time, but evolve slowly, we can make the model more
adaptive by estimating the densities on a moving window of length k only, thus forgetting older data
values. Posterior likelihood of the parameters would then read

f(α, σ|Ft) =
1

Itσk
exp

{
− 1

σ

t∑
i=t−k

|yi − φ′iα|

}
(6)

where It is again a normalization factor.

3. Integrating over parameter space - geometric considerations
To obtain the normalization factor Jt or It or to for example compute moments of the distribution of

the parameters, an integral has to be computed over the parameter space Ω. For the purposes of such
integration, the parameter space will be split into individual regions

It =

∫
Ω

1

It−1σk
exp

[
− 1

σ

t∑
i=t−k

|yi − φ′iα|

]
dσdα =

∞∫
0

∫
R1

1

It−1σk
exp

[
− 1

σ

(
ȳt;R1 − φ̄

′
t;R1

α
)]

dα

 dσ +

+

∞∫
0

∫
R2

1

It−1σk
exp

[
− 1

σ

(
ȳt;R2 − φ̄

′
t;R2

α
)]

dα

 dσ + · · ·

where

Ri =
{
α : ∀j ∈ Ji, yj − φ′jα ≥ 0;∀l ∈ Li, yl − φ′lα < 0

}
i ∈ {1, 2, . . . , N} ;Ji,Li ⊂ {1, . . . , t} ;Li = J C

i

C stands for complement in the set of indices {1, . . . , τ} and

ȳt;Ri
=

t∑
j=t−k

(−1)I(j∈Li)yj φ̄t;Ri;l =
t∑

j=t−k

(−1)I(j∈Li)φj;l (7)



Figure 1: A Hasse diagram representation of a 2-D single polyhedron.

where index l denotes l-th component of the original vector φ̄t;Ri
.

This way the parameter subspace of the location parameters α is divided into a complex of convex
polytopes Ri by the hyperplanes yi − φ′iα = 0. Some of these regions are infinite in certain direction
– we should resolve this property in the following text.

The integrals for each individual polyhedron Ri are computed separately and for the normalization
factor they can be exactly solved [3] if coordinates of the vertices are known and if the triangulation of
the polyhedron is known. The triangulation can be obtained by a selection procedure theorem described
in [4].

The coordinates could be computed by solving the sets of inequalities specifying each individual
region serially, but such a computation would be very ineffective. As can be seen, as new data arrive
and we move to time t+1, the parameter distribution is updated and if the estimation is again restricted
to a moving window of length k, one of the hyperplanes vanishes and a new one appears. In this article
an effective algorithm will be presented for merging and splitting a complex of convex polytopes.

II. Complex initialization phase

To be able to procede with an effective algorithm for splitting and merging, a suitable representation
of the complex at any given time t is needed. In computational geometry two main representations of
such a complex are often used.

First is the representation in a form of a binary space partitioning (BSP) tree, used often in computer
graphics [5]. Such a representation is not well suited for purposes of high parameter dimensions and
especially for purposes of merging.

The second approach is the one used in [1]. Here the complex is represented by a Hasse diagram as
shown in the example in Figure 1. A Hasse diagram can be used to represent any partially ordered set.
In our case, the Hasse diagram will represent the hierarchy of polyhedrons in an n-dimensional space,
where n is the number of location parameters α. Each row of the diagram represents all polyhedrons
pm, where m is the dimension, from dimension n in the top row down to dimension 0. This way the
points will be in the bottom row, above will be the line segments and so on. The polyhedrons inbetween

the rows are connected by an edge, if the lower one is a facet, marked
F

⊆, of the top one - the set of
vertices of the bottom polyhedron form a subset of the set of vertices of the top polyhedron. In the
same way we can represent the whole complex of polyhedrons, with possibly more than one elements
in the top row.

The later presented algorithm presents a transformation process of an original Hasse diagram
representation into the new one when a hyperplane vanishes and a new one cuts the complex. To
procede with the algorithm at least a simple Hasse diagram representation is needed to start with. For
this purpose a Hasse diagram representation of the location parameter space with a single point is



Figure 2: An example of initialization of a space representing Hasse diagram in two dimensions.

constructed in the following way

begin

1. Create a point p0
1 with coordinates 0 = (0, . . . , 0), where 0 is n-dimensional. Such a point is

also a simple Hasse diagramH0.

2. Set i = 1.

3. Create two copies of Hasse diagram Hi−1, move them up one level (points will be segments,
segments will be 2-D polytopes and so on) and create edges between each offspring and its
parent.

4. Create two new edge points p0
2i and p0

2i+1 with i-th coordinate equal to cmax and −cmax respec-
tively and the other coordinates equal to 0 and connect each segment of the first copy created in
previous step to the p0

2i and each segment of the second copy to p0
2i+1.

5. Call the new Hasse diagram Hi.

6. If i < n, then i = i+ 1 and goto step 3.

end

The procedure is sketched in Figure 2 in two dimensions. The constant cmax is chosen in respect
to physical conditions. An edge point is a marked point at the border of the space represented by
the created Hasse diagram. This way, we transform an original space, which is infinite into a finite
complex of convex polytopes and we remember that behind the edge points, the space continues. This
will allow us to proceed with the split/merge algorithm in a simple manner.

An alternative approach to the problem is the use of finite support for parameters α. Then we could
treat the edge points as regular points defining the parameter space. Such a choice could also be made
by the choice of an adequate prior distribution or stabilizing prior distribution. In such a case even the
function values on the polytopes could be altered. Such an option will not be further discussed in this
paper, but will be left for future research.



The above initialization procedure provides us with a triangulation automatically, since all the poly-
hedrons in the upper layer of the Hasse diagram are already the basic triangulation polyhedrons in
space of dimension n. It is therefore enough to remember the vertices for each polyhedron while
building the diagram.

III. Algorithm for splitting and merging the parameter space represented by a Hasse diagram

In this section the main split/merge algorithm should be presented. At time t new data arrive and fix
a new condition in the location parameter space

yt − φ′tα = 0︸ ︷︷ ︸
♠

(8)

this condition splits the parameter space by cutting certain polytopes of current complex represented
by a Hasse diagram. At the same time the moving window of length k shifts to the right and forces a
single condition

yt−k−1 − φ′t−k−1α = 0︸ ︷︷ ︸
♣

(9)

to fall out of the list of conditions specifying the estimated density and therefore the Hasse diagram to
be merged, where it has been split by ♣ before.

As opposed to [1] polyhedrons from the Hasse diagram are allowed to be doubled, when incident
conditions result in its multiple recreation. Such an event has a zero probability in many applications,
but in a the formulated statistical application and highly discretized real data, omission of such a
possibility can lead to high level of unreliability of the model. As well, incident conditions may appear.
Such a case will be treated separately, because the Hasse diagram doesn’t change, if this happens and
a simple linear check through active conditions can save a lot of computational time.

The algorithm proceeds with simultaneous merging, splitting and triangulation altering for polytopes
that change

begin

1. Check if the same condition as♠ exists in the list of conditions and if♣ isn’t a double condition.
If one or the other are true, alter the list accordingly (mark double and single conditions) and
apply changes to the top layer of the Hasse diagram (in case of previously presented integration,
change the function values for each n-dimensional polytope).

2. ∀p0
i , i ∈ {1, . . . , N0}, where N0 is the number of points:

(a) Classify p0
i as +,–,=

♠
and +,–,=

♣
by plugging the point into related condition equation

and remembering the observed sign.

(b) Send a message +,–,=
♠

to all polyhedrons whose vertex p0
i is. If it is the last vertex of a

given polyhedron mark it S if it is to be split (it contains + ♠ and also – ♠ vertex) and
add the polyhedron into a list of such polyhedrons (there will be a single list for each Hasse
layer). If all vertices are = ♠ mark a single polyhedron multi and mark it = ♠.

3. Set k = 0.

4. ∀pki classified = ♣:



(a) IF pki is a single polyhedron MERGE the parents + ♣ and – ♣ ELSE IF pki is a multi poly-
hedron with multiplicity 2, make it a single polyhedron

(b) Send admissible triangulations to the parent polyhedron and classify admissible triangulation
according to the classification theorem in [4].

5. ∀pki classified S :

(a) Split pki according to [1]. Treat all the = polyhedrons arising from the split as = ♠ (they are
equivalent when connecting children and parents).

(b) After the split obtain all admissible triangulations for all newly created plh from all pl−1
j

F

⊆ plh
and classify new admissible triangulations according to [4]. For new points compute their
coordinates.

6. IF k < n: k = k + 1 and goto 4.

end

A MERGE procedure merges two parents of a given = ♣ polyhedron by searching for its + and –
parents, merging their edges up and down. After that the = ♣ child is deleted.

According to the purpose of splitting and merging additional operations may be performed on the
resultant polyhedrons. The algorithm has to be analyzed to find the most effective way to place them
within the algorithm.

IV. Complexity

As can be seen complexity of the algorithm is a critical side to the presented problem. Although not
fully resolved yet, partial results are known.

In the initialization phase, we create approximately 3n polytopes. This phase can be performed
offline and therefore shouldn’t be problematic.

For the case of the main algorithm, the complexity has not been computed yet. The authors of [1]
give an upper complexity bound to the splitting part of the algorithm. Bounds for the number of points
linearly classified, maximum number of polytopes marked S and number of polytopes classified as
= ♣ needs to be found and is still an open problem for future research.

V. Acknowledgments

I would like to thank Ministry of Education, Youth and Sports of the Czech Republic for supporting
this research through project DAR 1M0572. I would like to thank the Czech Science Foundation
for supporting the research through project PUZZLE 102/08/0567. I would also like to thank my
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